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Characterizing Network Services through Cluster-Set Variations
Tony Bartoletti

Nu Ai Tang

ABSTRACT

Common Internet services can be reliably distinguished based solely upon the locations 
of clusters in traffic-based features (ratios of inbound to outbound packets, ratios of 
packets to payloads, etc.) This capability has value in revealing the nature of "hidden" 
(tunneled) services and in detecting anomalous changes to known services. We provide 
measures of session capture volumes sufficient to make confidence-level assertions 
regarding "unknown" services, and outline a throughput system for providing alarms for 
service anomalies.

BACKGROUND

Most network intrusion detection systems (IDSs) operate by monitoring network traffic 
in the most intrusive manner. Typically, the actual packet contents (payloads) are 
examined, in order to identify "known-harmful" strings, embedded commands intended 
to overflow buffers of vulnerable services and execute unauthorized codes, yielding 
control of the service to the attacker. Although there are variants of such IDS that 
involve "fuzzier" heuristics, most will fail to identify truly new forms of exploitation (for 
which the characteristic "exploit" code is not yet a known-string or derivative pattern).
Moreover, once the exploit has taken hold, subsequent unauthorized traffic may well 
"look like" legitimate traffic (at least, on a session-by-session basis) and thus provide no 
further indication that the system has been compromised. Finally, many services are 
often "tunneled" within another encrypted protocol (e.g., ssh), rendering the actual packet 
contents opaque to traditional IDS.

Therefore, service characterizations that can be made entirely upon the elements of traffic 
that must remain un-encrypted (the packet-routing, packet count and packet size
information) provide a valuable adjunct to traditional IDS.

Prior examination of traffic features performed over session summaries of LLNL CPP 
network capture revealed distinctive clustering patterns for different services (telnet, ftp, 
http, smtp, to name a few) as well as distinctive patterns on the encrypted SSH traffic, 
when partitioned according to the major destination machines servicing that protocol. In 
this latter case, it is surmised that individual SSH servers were largely tunneling a fixed
and distinct service or activity.

This project set out to build upon these observations by providing a methodology for 
distinguishing services in an operational environment. This requires both determining the 
number of records one must capture in order that the cluster set formed would tend to 
reach a stable set of proportions, and also a "distance-like metric" between clustering 
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patterns in order to make judgments on the relative closeness of patterns.  Cluster sets of 
varying size were also needed in order to demonstrate that one could test hypotheses 
regarding services with variable levels of confidence.

The following graphic depicts the clustering characteristics of six selected ports, 
produced prior to this study by Imola Fodor on behalf of CIAC data analysis.

It is clear by mere observation that each service supports a range of different session 
qualities, and that different services display very different clusters of such behaviors.

In each of the six cluster graphs above, the 7 columns represent the 7 features we had 
chosen to record or calculate for each “session”.  These features (from left to right) are

• Session Duration (in seconds)
• Source Payload Bytes (sent to port)
• Destination Payload Bytes (received from port)
• Source Packet Count (sent to port)
• Destination Packet Count (received from port)
• Ratio of Packets (sent/received)
• Ratio of Payloads (sent/received)

For each port, many thousands of such records were collected, and then clustered using 
the CLUTO[1] clustering tool, asking for 10 clusters on each occasion.  The 10 resulting 
clusters are depicted as rows in the cluster graphs.  The thickness (height) of a given row 
is proportional to the number of records that landed in that particular cluster, and for each 
row, the color intensity for each column depicts the mean value of the corresponding 
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feature, over the records in that cluster, with red indicating a high value, and white a low 
value. For instance, the top row of the port 53 cluster set is the only cluster with a very 
high average session duration (leftmost column), but has very few records.  This may 
reflect DNS update activity, in contrast to the more varied DNS queries being serviced.

Put another way, each session record is treated as a 7-dimensional vector, and the colors 
in a given row reflect the values of the centroid-vector for the vectors in that cluster.  For 
the purposes of this study, we have no particular interest in individual session records, 
except as they contribute to the formation of the clusters and the determination of the 
resulting cluster centroids.  Therefore, I will generally use the term “cluster set” to refer 
to the set of 10 centroid vectors determined by the clustering process.

THE DATA

The study we conducted used data captured at LLNL by a "Niksun" session-summary 
product, as part of the DOE Cooperative Protection Program (CPP). The data covered 
the month of February 2004, and amounted to about 500 Gb uncompressed data, 
representing approximately one billion "sessions" (80% are actually TCP probes and not 
true sessions, and probably 90% of the remainder are HTTP “get” commands induced 
when web pages are processed). The Niksun sensor makes no attempt to distinguish 
internal from external services, and thus the sessions captured may have originated from 
either external or internal clients. Moreover, "session summaries" are really session 
traffic summaries. The actual packet payloads are not examined. Each session summary 
consists of a set of identifiers and statistics, which included:

a. Session Duration in seconds
b. Protocol (TCP, UDP, etc)
c. Source IP Address
d. Source IP port
e. Dest IP Address
f. Dest IP port
g. SrcPackets (Total packets sent by Source)
h. DstPackets (Total packets returned by Dest)
i. SrcPayload (Total payload from Source, excludes packet headers)
j. DstPayload (Total payload from Dest, excludes packet headers)

To ensure that we were dealing with "true" sessions and not with hostile (unanswered) 
probes, we reduced the data by requiring the conjunction

SrcPackets > 0
DstPackets > 0
SrcPayload > 0
DstPayload > 0

This restriction leaves approximately 200,000,000 "real" sessions for the month. We also 
had to eliminate about 0.3 % of these records, as they were reported by the capture tool as 
having a negative duration.  We dispensed with the source and destination IP addresses 
and the source port, as these were unnecessary for our purposes.
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Finally, we partitioned all of the records according to destination port and protocol 
(hence, by “service”) and reduced the records to 7-dimensional vectors of the form:

<Duration,SrcBytes,DstBytes,SrcPackets,DstPackets,ByteRatio,PacketRatio>

with the caveat that ALL values were converted to log(1+value) to provide better 
separation in the face of extreme values.

THE CONCEPT

Typical network sessions with specific services (Telnet, Web/HTTP, FTP, Sendmail, etc) 
exhibit different traffic characteristics. For instance, a typical Telnet session may have 
long duration (the user remains logged-in for a long time), and most often, the client 
(source IP) sends relatively few packets or bytes, consisting mostly of shell-based 
commands such as "ls", while the server (destination IP) may return hundreds of packets 
or bytes in return, such as a very long directory listing resulting from the aforementioned 
"ls" command. In contrast, HTTP (Web) "sessions" are typically very short (each "fetch" 
of a single page, or page component is a complete "session" in the TCP sense.)

However, any individual session, in almost any service, can be far from the "typical" 
session for that service. Thus, rather than attempt to characterize individual sessions (or 
characterize a service by calculating its “average” session), we claim a more stable 
position by arguing that the distribution of session behaviors seen for each type of service 
are strongly characteristic of that service. Hence, upon reduction of each evident session 
to a record of standard features, we apply clustering methods to a large population of 
such sessions, and consider the set of resulting centroids (the “averaged” session for each 
cluster in the cluster set) to represent our signature of the service in question.

When given a large body of records of standard features, such as

<duration,bytes-in,bytes-out,packets-in,packets-out>

clustering methods employ various heuristics to group these records into individual 
"clusters", such that records having very similar feature values end up in the same cluster, 
while those that differ greatly in one or more features end up in different clusters. One 
can arbitrarily demand that a clustering method produce (say) ten clusters, in which case 
an attempt is made to divide-up the records in a way that will produce the "best" (most 
distinct) ten clusters. This is the approach we have taken (specifically, the method of 
repeated bisections in the formation of 10 clusters) so that we would be able to compare 
the clustering results across different populations of services and session behaviors.

Given a sufficiently large sample from a population of session records for a given 
service, we expect (under the demand of, say, 10 clusters) that the resulting cluster set 
tends to stabilize. That is, a subsequent sample from the same population would result in 
a similar cluster set. Once a reasonable numeric measure of the disparity between two 



6

cluster sets had been established, we could examine the degree of this stabilization as a 
function of sample size, and confirm our hypothesis that this derived "distance" between 
cluster-sets will remain significantly larger when the comparison is between populations 
from disparate services (e.g, Telnet versus FTP) than it is between samples from the same 
population.

Our goal is then to quantify this relation between sample size and expected distance, in 
support of "likelihood assertions" regarding newly observed service behaviors.

THE METHODOLOGY

To begin the study, we partitioned the session records by day, according to destination 
port. This gave us a sense of the number of sessions one could expect, for each service, 
in a given time interval. Foremost, it served to help us further restrict the range of 
services we would study, as many of these were not evident in sufficient number to 
warrant a strong statistical treatment. This left us to study the following 6 services:

Port 21 FTP
Port 22 SSH
Port 25 SMTP (Sendmail)
Port 80 HTTP (web services)
Port 110 POP (Post Office Protocol)
Port 443 HTTPS (secure web)

For these remaining services, records were aggregated in sets of size 1000, 2000, 4000, 
and 8000 (and occasionally in other sizes.) The volume of HTTP (web) traffic was such 
that only about 1 day's worth of sessions was sufficient to produce 50 or so sets in each
size, while other services required a week or more of the session summaries.

Note:  Originally, we desired many sets of each size in {1000,2000,4000,8000} in order 
to investigate the degree to which stability would increase with increasing sample sizes. 
Although we conducted sufficient tests to confirm this behavior, we focused most of our 
attention on the largest size record collections, size 8000, in order to establish the 
effectiveness of the discrimination method.  For most of the following discourse, consider 
each data set to contain 8000 records.

For each set, clustering was applied via CLUTO to generate 10 clusters, and the 
consequent set of 10 centroids was recorded, along with the number of records in each 
corresponding cluster.  These numbers were applied as "weights" when conducting the 
cluster-set comparisons described below.
The 10 cluster-set centroids serve to characterize the entire set of records that were 
subject to the clustering (and hence, serve to characterize the service, if all records were 
from a single service.)
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One is then interested in knowing how much variance to expect when performing 
clustering on two separate populations of records, each population (ostensibly) 
representing sessions of the same service type (e.g., both are records of Telnet sessions.)
This requires a measure of the "distance" between two cluster-sets. The distance function 
we employed is described here.

Let P and Q be two populations of records possessing f features from the same 
schema (common positional fields measure the same feature). Let pi be the i-th 
record in set P.

Let CP = {CPk}, for k = 1…10 be the partitioning of P into 10 clusters according to 
the CLUTO default settings (method of repeated bi-sections).

Let cP = {cPk} be the set of 10 centroids for the clusters of CP.

Likewise, let cQ = {cQk} be the set of 10 centroids for the clusters of CQ.

The "cluster-set distance" we seek is D(P,Q) = | cP - cQ |. The question remained, how 
to define | cP - cQ |.

Naively, one would like to define this cluster-set distance simply by summing the 
pairwise "vector-differences" | cPk – cQk |. Unfortunately, there is no a-priori way to 
establish that the k-th cluster CPk of P corresponds to the k-th cluster CQk of Q. Indeed, 
under many clustering schemes, a tool may produce a different clustering order when 
given the same records in an alternate sequence.  Effectively, one is left with two sets cP
and cQ of 10 centroids each, each set unordered.

It is therefore most natural to define the distance between CP and CQ to be the minimal 
distance possible that can be generated by pairing each cPj to cQk, in sets of 10 pairs 
where |{j}| = |{k}| = 10. For cluster-sets having 10 clusters, this represents a daunting
10! = 3,628,800 possible sets, each of 10 pairs, to examine exhaustively.

Fortunately, there is a tractable solution to this minimization problem via the Hungarian 
matching algorithm, with order O(n1.5) complexity[2]. We create a 10x10 matrix of the 
100 possible individual vector differences

M = [ Mi,j ] = [ | cPi - cQj | ]

and the Hungarian algorithm returns the set of 10 pairs { (ix, jy) } indicating precisely the 
matching that will result in the minimal sum of vector differences. The corresponding 
sum of (Euclidean) vector differences was then calculated.

Having in hand a reasonable cluster-set distance function, D(P,Q), we needed to establish 
empirically the "typical" distance between cluster sets formed from a common service 
population, in comparison to the distance values derived when comparing cluster sets 
from different services.  We conducted this examination by creating 10 to 20 sets of 8000 
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records from each service, generating their corresponding centroid sets, and then 
determining mean and standard deviation in the values D(P,Q).

The tables below show a result of these comparisons

Mean 80-6 21-6 22-6 25-6 443-6 110-6
80-6 1.3437 5.2379 3.9572 4.8454 2.6405 4.2445
21-6 * 0.827 6.4468 3.7639 5.2996 3.4534
22-6 * * 1.0351 5.5877 4.0224 5.41
25-6 * * * 1.3731 4.982 4.9732
443-6 * * * * 1.7452 4.668
110-6 * * * * * 1.1753

Stdv 80-6 21-6 22-6 25-6 443-6 110-6
80-6 0.7513 * * * * *
21-6 * 0.6317 * * * *
22-6 * * 0.4729 * * *
25-6 * * * 0.7516 * *
443-6 * * * * 0.7616 *
110-6 * * * * * 0.5098

Happily, we note that the "mean distance" between sets from the same service (values 
along the diagonal in the table of means) are everywhere significantly smaller than the 
off-diagonal values.  One could employ these, together with the derived standard 
deviations, to argue (for instance) that SMTP (port 25) behavior appears to differ from 
HTTP (web) traffic behavior by

(4.8454 – 1.3437)/0.7513 = 4.66 standard deviations.

Hence, the likelihood of mistaking SMTP traffic for HTTP traffic, given 8000 records of 
each, is exceedingly small. In contrast, port 443 (HTTPS) differs from regular HTTP 
traffic by only

(2.6405 – 1.3437)/0.7513 = 1.73 standard deviations.

It is important to note that we are making these determinations entirely upon traffic 
statistics (ratios of packets to bytes, inbound versus outbound, etc) and without access to 
the packet content or a priori cognizance of the ports in question.

The chart below depicts each port, its mean and standard deviation in cluster set distance 
to that of clusters from the same and from different ports, and how far different ports lie 
in terms of standard deviations.
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The chart below outlines the “throughput” system developed for both exploration and 
potential operational capabilities.

Process Flowchart

Raw Sessions

Dataprep Instructions

Dataprep

Port-Proto Sets

Mcount

Mcount Instructions

Initial Session Data
Characterization

CLUTO

CLUTO Instructions

Cluster Tags

Vdist –M 1

Cluster Sets

Initial Clustering
Characterization

Additional Clustering
Characterization

Vdist –M 2 Cluster Set
Comparisons
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In the process flowchart, “MCount” accepts TCP session summary records, and provides 
(among other measures) the number of sessions by destination port.  Having identified 
ports for which a sufficient number of sessions existed, session records were partitioned 
and passed to “DataPrep”, transforming the records into those containing the desired 
component values.  These port-protocol sets each containing groupings of 8000 records.

Each port-protocol set was clustered using CLUTO, and then to a process “VDist –M 1” 
to determine the cluster-set centroids.  Finally, “VDist –M 2” was called over multiple 
sets of centroids. In Mode 2, the Hungarian algorithm is employed to generate minimal 
cluster-set distances, further to conduct round-robin and KxK distance sets for calculation 
of means and standard deviations.

Future Work

There are many areas where refinement of measures should improve upon these results.

In terms of the raw data itself, the records clustered could have components formed 
through principal component analysis (PCA) rather than using the raw components.

In terms of the clustering operations, one could explore different clustering algorithms 
(agglomerative versus repeated-bisections), and vary the distance measure used in the 
clustering algorithm (the CLUTO default is cosine-distance.)  One could also attempt to 
find an optimal number of clusters for this analysis (we selected 10 out of thin air.)

There would be additional value in determining the degree to which these cluster-set 
discrimination measures degrade as the number of available records is reduced.

Conclusion

We have demonstrated the ability to distinguish between common network services based 
entirely upon features extracted from traffic statistics.  Such a capability may serve to 
identify “unlabeled” services operating on usual, or unusual service ports, and even to 
characterize a service tunneled with encryption through another dedicated service.  
Importantly, the fact that such characterization is possible in the absence of packet 
content inspection mitigates many privacy concerns that might otherwise hamper data 
sharing efforts.
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